7.1. (Non)homogeneous wave equation

(a) Let $u=u(x, t)$ be a solution of the wave equation

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=1, & (x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=1, & x \in \mathbb{R} \\ u_{t}(x, 0)=1, & x \in \mathbb{R}\end{cases}
$$

Compute the explicit solution.
(b) Let $u=u(x, t)$ be a solution of the wave equation

$$
\begin{cases}u_{t t}-2 u_{x x}=0, & (x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=f(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=\sin (x), & x \in \mathbb{R}\end{cases}
$$

where $f(x)=x$, if $|x| \leq 2$ and $f(x)=0$, if $|x|>2$. Is u smooth? Otherwise, where are the singularities of u ? Compute the explicit solution after answering these questions.
7.2. Propagation of symmetries from initial data, II Consider the general nonhomogeneous wave equation posed for $-\infty<x<\infty$ and $t>0$,

$$
\left\{\begin{aligned}
u_{t t}-c^{2} u_{x x} & =F(x, t), & & (x, t) \in \mathbb{R} \times(0, \infty), \\
u(x, 0) & =f(x), & & x \in \mathbb{R}, \\
u_{t}(x, 0) & =g(x), & & x \in \mathbb{R} .
\end{aligned}\right.
$$

Take advantage of the uniqueness Theorem (4.4.6) in the notes to show that
(a) if f, g and $F(\cdot, t)$ are odd/even functions, then $u(\cdot, t)$ is itself odd/even.
(b) if f, g and $F(\cdot, t)$ are periodic with same period $T>0$ (i.e. $f(x+T)=f(x)$, $g(x+T)=g(x)$ and $F(x+T, t)=F(x, t)$ for all $x \in \mathbb{R}$ and $t>0)$, then $u(\cdot, t)$ is itself periodic with period T.
7.3. Wave equation on a ring Let $u:[0,1] \times[0, \infty) \rightarrow \mathbb{R}$ be a solution of the wave equation

$$
\left\{\begin{aligned}
u_{t t}-u_{x x} & =0, & & (x, t) \in[0,1] \times(0, \infty), \\
u(x, 0) & =x-x^{2}, & & x \in[0,1], \\
u_{t}(x, 0) & =0, & & x \in[0,1], \\
u(0, t) & =u(1, t), & & t \in(0, \infty), \\
u_{x}(0, t) & =u_{x}(1, t), & & t \in(0, \infty) .
\end{aligned}\right.
$$

Compute $u(1 / 2,2022)$.
7.4. Multiple choice Cross the correct answer(s).
(a) Let u be solution of the homogeneous wave equation

$$
\begin{cases}u_{t t}-9 u_{x x}=0, & (x, t) \in \mathbb{R} \times(0, \infty), \\ u(x, 0)=f(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=g(x), & x \in \mathbb{R}\end{cases}
$$

Let h be a smooth function, and u_{h} be the solution of the above PDE with perturbed initial condition $u_{h}(x, 0)=f(x)$ and $\left(u_{h}\right)_{t}(x, 0)=g(x)+h(x)$. Then, $u(1,2)=u_{h}(1,2)$
\bigcirc whenever h has compact support in $[-5,7]$
whenever $\int_{-5}^{7} h(x) d x=0$only when h constantly equal to zero \bigcirc whenever h us equal to zero in $[-5,7]$
(b) Same question as (a), but when we perturb $u_{h}(x, 0)=f(x)+h(x),\left(u_{h}\right)_{t}(x, 0)=$ $g(x)$.
\bigcirc only when h constantly equal to zeroalways for h small enough
\bigcirc when $h(x)=\sin (\pi(x+1))$whenever $h(-5)=h(7)=0$
(c) Let u be solution of the homogeneous wave equation

$$
\begin{cases}u_{t t}-u_{x x}=F(x), & (x, t) \in \mathbb{R} \times(0, \infty) \\ u(x, 0)=f(x), & x \in \mathbb{R} \\ u_{t}(x, 0)=g(x), & x \in \mathbb{R}\end{cases}
$$

Suppose that F, f and g are trigonometric polynomials as in Exercise 6.2 (b), with $\int_{0}^{2 \pi} g d x=0$. Then, u isnever
\bigcirc always for $F \equiv 0$
O always
\bigcirc never unless $F \neq f$
2π-periodic in time ${ }^{1}$, that is $u(x, t+2 \pi)=u(x, t)$ for all $(x, t) \in \mathbb{R} \times(0,+\infty)$.

[^0]
Extra exercises

7.5. Strange wave equation Show that the following partial differential equation admits a solution

$$
\left\{\begin{aligned}
u_{t t}-u_{x x} & =\frac{u_{t}^{2}-u_{x}^{2}}{2 u}, & & (x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0) & =x^{4}, & & x \in \mathbb{R} \\
u_{t}(x, 0) & =0, & & x \in \mathbb{R}
\end{aligned}\right.
$$

Hint: Consider the function $v(x, t)=\sqrt{u(x, t)}$. What equation does it satisfy?

[^0]: ${ }^{1}$ Be careful, this is not the same as being periodic in the x variable, as in Exercise 7.2.

